1,580 research outputs found

    New insights on hadron acceleration at supernova remnant shocks

    Full text link
    We outline the main features of nuclei acceleration at supernova remnant forward shocks, stressing the crucial role played by self-amplified magnetic fields in determining the energy spectrum observed in this class of sources. In particular, we show how the standard predictions of the non-linear theory of diffusive shock acceleration has to be completed with an additional ingredient, which we propose to be the enhanced velocity of the magnetic irregularities particles scatter against, to reconcile the theory of efficient particle acceleration with recent observations of gamma-ray bright supernova remnants.Comment: 7 pages, 2 figures. To apper in "Cosmic-ray induced phenomenology in star-forming environments: Proceedings of the 2nd Session of the Sant Cugat Forum of Astrophysics" (April 16-19, 2012), Olaf Reimer and Diego F. Torres (eds.

    High Energy Cosmic Rays From Supernovae

    Get PDF
    Cosmic rays are charged relativistic particles that reach the Earth with extremely high energies, providing striking evidence of the existence of effective accelerators in the Universe. Below an energy around ∼1017\sim 10^{17} eV cosmic rays are believed to be produced in the Milky Way while above that energy their origin is probably extragalactic. In the early '30s supernovae were already identified as possible sources for the Galactic component of cosmic rays. After the '70s this idea has gained more and more credibility thanks to the the development of the diffusive shock acceleration theory, which provides a robust theoretical framework for particle energization in astrophysical environments. Afterwards, mostly in recent years, much observational evidence has been gathered in support of this framework, converting a speculative idea in a real paradigm. In this Chapter the basic pillars of this paradigm will be illustrated. This includes the acceleration mechanism, the non linear effects produced by accelerated particles onto the shock dynamics needed to reach the highest energies, the escape process from the sources and the transportation of cosmic rays through the Galaxy. The theoretical picture will be corroborated by discussing several observations which support the idea that supernova remnants are effective cosmic ray factories.Comment: Final draft of a chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdi

    The Extremes of Thermonuclear Supernovae

    Full text link
    The majority of thermonuclear explosions in the Universe seem to proceed in a rather standardised way, as explosions of carbon-oxygen (CO) white dwarfs in binary systems, leading to 'normal' Type Ia supernovae (SNe Ia). However, over the years a number of objects have been found which deviate from normal SNe Ia in their observational properties, and which require different and not seldom more extreme progenitor systems. While the 'traditional' classes of peculiar SNe Ia - luminous '91T-like' and faint '91bg-like' objects - have been known since the early 1990s, other classes of even more unusual transients have only been established 20 years later, fostered by the advent of new wide-field SN surveys such as the Palomar Transient Factory. These include the faint but slowly declining '02es-like' SNe, 'Ca-rich' transients residing in the luminosity gap between classical novae and supernovae, extremely short-lived, fast-declining transients, and the very luminous so-called 'super-Chandrasekhar' SNe Ia. Not all of them are necessarily thermonuclear explosions, but there are good arguments in favour of a thermonuclear origin for most of them. The aim of this chapter is to provide an overview of the zoo of potentially thermonuclear transients, reviewing their observational characteristics and discussing possible explosion scenarios.Comment: Author version of a chapter for the 'Handbook of Supernovae', edited by A. Alsabti and P. Murdin, Springer. 50 pages, 7 figure

    A Relativistic Type Ibc Supernova Without a Detected Gamma-ray Burst

    Full text link
    Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of Type Ibc supernovae (SNe Ibc). They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. To date, central engine-driven SNe have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected due to limited satellite sensitivity or beaming of the collimated emission away from our line-of-sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for SNe Ibc with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary Type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. The lack of a coincident GRB makes SN 2009bb the first engine-driven SN discovered without a detected gamma-ray signal. A comparison with our extensive radio survey of SNe Ibc reveals that the fraction harboring central engines is low, ~1 percent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Our study demonstrates that upcoming optical and radio surveys will soon rival gamma-ray satellites in pinpointing the nearest engine-driven SNe. A similar result for a different supernova is reported independently.Comment: To appear in Nature on Jan 28 2010. Embargoed for discussion in the press until 13:00 US Eastern Time on Jan 27 (Accepted version, 27 pages, Manuscript and Suppl. Info.

    Multiwavelength Observations of Pulsar Wind Nebulae

    Full text link
    The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the central engines, and the long-term fate of the energetic particles produced in these systems. Such observations reveal the presence of jets and wind termination shocks, time-varying compact emission structures, shocked supernova ejecta, and newly formed dust. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples from observations extending from the radio band to very-high-energy gamma-rays that demonstrate our ability to constrain the history and ultimate fate of the energy released in the spin-down of young pulsars.Comment: 20 pages, 11 figures. Invited review to appear in Proc. of the inaugural ICREA Workshop on "The High-Energy Emission from Pulsars and their Systems" (2010), eds. N. Rea and D. Torres, (Springer Astrophysics and Space Science series

    Hydrogen-poor superluminous stellar explosions

    Full text link
    Supernovae (SNe) are stellar explosions driven by gravitational or thermonuclear energy, observed as electromagnetic radiation emitted over weeks or more. In all known SNe, this radiation comes from internal energy deposited in the outflowing ejecta by either radioactive decay of freshly-synthesized elements (typically 56Ni), stored heat deposited by the explosion shock in the envelope of a supergiant star, or interaction between the SN debris and slowly-moving, hydrogen-rich circumstellar material. Here we report on a new class of luminous SNe whose observed properties cannot be explained by any of these known processes. These include four new SNe we have discovered, and two previously unexplained events (SN 2005ap; SCP 06F6) that we can now identify as members. These SNe are all ~10 times brighter than SNe Ia, do not show any trace of hydrogen, emit significant ultra-violet (UV) flux for extended periods of time, and have late-time decay rates which are inconsistent with radioactivity. Our data require that the observed radiation is emitted by hydrogen-free material distributed over a large radius (~10^15 cm) and expanding at high velocities (>10^4 km s^-1). These long-lived, UV-luminous events can be observed out to redshifts z>4 and offer an excellent opportunity to study star formation in, and the interstellar medium of, primitive distant galaxies.Comment: Accepted to Nature. Press embargoed until 2011 June 8, 18:00 U

    Supernova Remnants as Clues to Their Progenitors

    Full text link
    Supernovae shape the interstellar medium, chemically enrich their host galaxies, and generate powerful interstellar shocks that drive future generations of star formation. The shock produced by a supernova event acts as a type of time machine, probing the mass loss history of the progenitor system back to ages of ∼\sim 10 000 years before the explosion, whereas supernova remnants probe a much earlier stage of stellar evolution, interacting with material expelled during the progenitor's much earlier evolution. In this chapter we will review how observations of supernova remnants allow us to infer fundamental properties of the progenitor system. We will provide detailed examples of how bulk characteristics of a remnant, such as its chemical composition and dynamics, allow us to infer properties of the progenitor evolution. In the latter half of this chapter, we will show how this exercise may be extended from individual objects to SNR as classes of objects, and how there are clear bifurcations in the dynamics and spectral characteristics of core collapse and thermonuclear supernova remnants. We will finish the chapter by touching on recent advances in the modeling of massive stars, and the implications for observable properties of supernovae and their remnants.Comment: A chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdin (18 pages, 6 figures

    The bright optical afterglow of the nearby gamma-ray burst of 29 March 2003

    Get PDF
    Many past studies of cosmological gamma-ray bursts (GRBs) have been limited because of the large distance to typical GRBs, resulting in faint afterglows. There has long been a recognition that a nearby GRB would shed light on the origin of these mysterious cosmic explosions, as well as the physics of their fireballs. However, GRBs nearer than z=0.2 are extremely rare, with an estimated rate of localisation of one every decade. Here, we report the discovery of bright optical afterglow emission from GRB 030329. Our prompt dissemination and the brilliance of the afterglow resulted in extensive followup (more than 65 telescopes) from radio through X-ray bands, as well as measurement of the redshift, z=0.169. The gamma-ray and afterglow properties of GRB 030329 are similar to those of cosmological GRBs (after accounting for the small distance), making this the nearest known cosmological GRB. Observations have already securely identified the progenitor as a massive star that exploded as a supernova, and we anticipate futher revelations of the GRB phenomenon from studies of this source.Comment: 13 pages, 4 figures. Original tex

    Radio Remnants of Compact Binary Mergers - the Electromagnetic Signal that will follow the Gravitational Waves

    Full text link
    The question "what is the observable electromagnetic (EM) signature of a compact binary merger?" is an intriguing one with crucial consequences to the quest for gravitational waves (GW). Compact binary mergers are prime sources of GW, targeted by current and next generation detectors. Numerical simulations have demonstrated that these mergers eject energetic sub-relativistic (or even relativistic) outflows. This is certainly the case if the mergers produce short GRBs, but even if not, significant outflows are expected. The interaction of such outflows with the surround matter inevitably leads to a long lasting radio signal. We calculate the expected signal from these outflows (our calculations are also applicable to short GRB orphan afterglows) and we discuss their detectability. We show that the optimal search for such signal should, conveniently, take place around 1.4 GHz. Realistic estimates of the outflow parameters yield signals of a few hundred μ\muJy, lasting a few weeks, from sources at the detection horizon of advanced GW detectors. Followup radio observations, triggered by GW detection, could reveal the radio remnant even under unfavorable conditions. Upcoming all sky surveys can detect a few dozen, and possibly even thousands, merger remnants at any give time, thereby providing robust merger rate estimates even before the advanced GW detectors become operational. In fact, the radio transient RT 19870422 fits well the overall properties predicted by our model and we suggest that its most probable origin is a compact binary merger radio remnant
    • …
    corecore